Tag Archives: ATT&CK

What your CMD command line security is missing

Here is what your should do to increase your cmd command line security
Gap in Your Command-line Security

I want to write a follow-up on my last post about chain-of-commands not properly being captured by many defensive tools. During further research and testing, I observed that built-in Windows Command line actions are also not captured.

For instance, a simple act of deleting a file from the CMD Command-line is neither captured in SYSMON or in Windows Event logs:

 CMD.EXE > del /f test_file.txt
file_del_cmd

The only event observed in SYSMON for the above action was the following:

del_file

Additionally, nothing notable was observed in Windows Event logs.

This simple act of deleting a file is a common technique used by the adversaries. This action could be done both manually or through malware. One example where this technique is used is in the case of the Robbinhood Ransomware. In this sandbox report, you can see various quite-delete operations that Robbinhood malware executes.

I understand that there are other means of extracting CMD Command-line execution content. However, many of those require digital forensics analysis.

For instance, you can review Command-line history by analyzing the memory capture using a tool such as Volatility with plugins: cmdscan, consoles or just running strings against the memory image. However, this type of analysis requires either a memory image capture or a specialized commercial solution that can scan live memory content (example). Unfortunately, most organizations do not have access to these enterprise-solutions thus their ability to hunt for such Command-line techniques becomes limited.

MITRE ATT&CK Evaluations also has an entry for this technique 9.C.4 File Deletion where you can select various technologies from the drop-down list and see how they detect this technique.

If you are collecting and hunting full CMD Commandline, I would love to hear about your feedback; especially, if the technology/method that you are using is not one of the ones tested in ATT&CK Evaluations above.

https://attackevals.mitre.org/technique_comparison.html?round=APT29&step_tid=9.C.4_T1107&vendors=


Tagged , , , , , ,

Who Else is Blind to Chain-of-Commands | Adversary Technique

photo-1567635102602-73000b63761a

I recently came across a technique that potentially allows the adversary to both execute and evade detection that is simple to execute, however, to my surprise, not entirely captured by detection tools (at least not by those that I have tested).

In this quick post, I will share my findings & analysis and I am interested in any feedback around options for detection.

Technique Description: The adversary executes a custom-developed, chain-of-commands that they execute together as a single command-line using Windows CMD.EXE. This execution could be achieved through malware or the adversary could manually perform it on a system under their control.

One of the key advantages of this technique for the adversary is that, as of this writing, SYSMON (10.0.4.2), and maybe even some commercial EDR solutions, do not capture such chain-of-commands as a single execution. Instead, these tools typically log this activity separately. I found nothing in the SYSMON logs or Windows native event logs that indicate that multiple commands were executed together as part of a chain.

If what I have observed in true, then I think this lack of total context makes it difficult for incident responders, threat hunters, or security monitoring professionals to identify such activity as anomalous among a large number of events. On the other hand, it allows the adversary to hide in plain sight.

Technique Use in Real Malware: One particular malware where I found this technique being used was in the RobbinHood Ransomware. In my analysis of these two samples (1, 2), this chain-of-command technique can be observed in a couple different ways. However, in one specific instance, RobbinHood uses this technique to check for network connectivity, terminates its previously-launched malicious process and subsequently deletes that same process executable quietly from the system permanently. The command itself was as follows:

ping 1.1.1.1 -n 1 -w 3000 > 
& taskkill /f /im steel.exe & Del /f /q ‘C:\Users\user\Desktop\steel.exe’

Atomic Test: To simulate the above technique, I developed this benign chain-of-commands, which essentially, first checks network connectivity by making a single ICMP ping request to a Google’s public DNS address, and then it terminates a running Chrome web browser process.

ping 8.8.8.8 -n 1 -w 3000 > Nul & taskkill /f /im chrome.exe

chain_of_command_atomic_test

Here is what I observed in SYSMON on the atomic test above:

First, you see an entry for PING.EXE portion of the chain-of-command:

ping_sysmon

Second, you see separate entry for the latter portion of the chain where the CHROME.EXE process is terminated:

taskkill_sysmon

It is evident in the SYSMON events above that both processes share the same Parent Process ID. However, while both events share the same ParentProcessID of 12120, there isn’t any explicit indication that these commands were executed together as part of a chain-of-commands. Which I believe is an important context that is missing as it would not only stick-out during Incident Response/Hunt/Monitoring; especially if the system under investigation and has no business purpose to running such chain-of-commands.

I do want to highlight that I think SYSMON is capturing what it is supposed to capture – a process creation. It captured as each process was created on the system; which was separately one at a time. The limitation appears to be at the operating system level where this data is not captured.

I look forward to feedback and how are you detecting this technique in your environments!

Reference:

MalwareReference
Trojan; possibly Big Bang APT1. https://bit.ly/2xaAVNr
2. https://bit.ly/2KBddgp
3. https://bit.ly/3cUVkFH
Raccoon Stealerhttps://bit.ly/35i8dXP
InstallCube Trojanhttps://bit.ly/2yMjmDI
GreenKit Bitcoin Mining Rootkithttps://bit.ly/3aDRI9i
TROJ_VICEPASS.A1. https://bit.ly/2y2PrHr
2. https://bit.ly/2xem5Wm

Tagged , , ,
Advertisements